专利摘要:
The invention relates to a method for monitoring the load of a tamping unit (2) of a track construction machine (1), wherein at least one sensor (3) for detecting a load of the tamping unit (2) is arranged. In this case, by means of the sensor (3) recorded measurement data over a period of time (T) away in an evaluation (5) stored, wherein from the stored measurement data at least one load-time course for cyclic Eindringvorgänge (17) of Stopfaggregats (2) in a Ballast bed (10) is derived. This allows conclusions to be drawn on the load situation of the tamping unit (2) and on the condition of the ballast bed (1 0).
公开号:AT520698A1
申请号:T472/2017
申请日:2017-12-07
公开日:2019-06-15
发明作者:
申请人:Plasser & Theurer Export Von Bahnbaumaschinen Gmbh;
IPC主号:
专利说明:

(3)
Aus einem Verlauf der Eindringleistung Pe über eine zusammenhängende Arbeitszeitspanne T hinweg lassen sich sowohl Rückschlüsse auf die Belastungssituation des Stopfaggregats 2 als auch auf die Beschaffenheit des während der Arbeitszeitspanne T bearbeiteten Schotterbetts 10 ziehen. Auch hier ist eine Mittelwertbildung sinnvoll.
[28] Bei Mehrfachstopfungen erfolgen mehrere Stopfvorgänge (Unterzyklen) an einer Stelle des Gleises 6, um einen vorgegebenen Verdichtungsgrad des Schotterbetts 10 zu erreichen. In diesem Fall werden mehrere Belastungs-Zeit-Verläufe gebildet, nämlich entsprechend der Reihung der Unterzyklen. Bei einer Zweifachstopfung wird beispielsweise der Verlauf der Eindringkraft
Fe, der Eindringenergie Ee oder der Eindringleistung Pe für alle ersten Unterzyklen und separat für alle zweiten Unterzyklen ermittelt.
[29] Als Exzenterantrieb 14 zur Vibrationserzeugung ist beispielsweise ein Hydraulikmotor vorgesehen. Dabei werden eine Druckdifferenz Δρ zwischen Eintritt und Ausritt des Hydrauliköls und eine Durchflussmenge Q des Hydrauliköls gemessen, um eine hydraulische Leistung Ph des
Exzenterantriebs 14 zu bestimmen:
(4) Über den jeweiligen Stopfzyklus wird die Exzenterleistung Ph gemittelt. Für eine zusammenhängende Arbeitszeitspanne T mit zahlreichen Stopfzyklen ergibt sich daraus als Vibrationsbelastungs-Zeit-Verlauf der Verlauf der Exzenterleistung Ph über der Zeit t.
[30] Die einzelnen Verläufe sind vereinfacht in Fig. 3 dargestellt. Das oberste Diagramm zeigt einen Verlauf des Eindringwegs x (Eindringtiefe) über der Zeit t. Dieser entspricht dem erfassten Kolbenweg x des Hydraulikzylinders 23. Am Anfang des Eindringwegs xo berühren die Spitzen der Stopfwerkzeuge 12 die Oberfläche des Schotterbetts 10 und am Ende des Eindringwegs xi haben die Stopfwerkzeuge 12 die vorgesehene maximale Eindringtiefe erreicht. In den Diagrammen darunter sind mit übereinstimmender Zeitachse die Verläufe der Durchflussmenge Q, der Druckdifferenz Δρ, der resultierenden Exzenterleistung Ph und ganz unten der Verlauf der Eindringkraft Fe dargestellt.
[31] Wie in Fig. 4 ersichtlich umfasst die Auswerteeinrichtung 5 eine Datenerfassungseinheit 25, einen Mikroprozessor 26 und ein Kommunikationsmittel 27 (z.B. Modem) zur Übertragung von Daten an entfernte Rechnersysteme 28 bzw. Ausgabeeinrichtungen 29. Zur Zwischenspeicherung von Daten ist der Mikroprozessor 26 günstigerweise mit einer Speichereinrichtung 30 verbunden. Das entfernte Rechnersystem 28 umfasst zudem eine Datenbankeinrichtung 31, um historische Daten abzuspeichern.
[32] Einer Maschinensteuerung 32 sind Ausgangssignale der Sensoren 3 zur Bildung eines Regelkreislaufs zugeführt. Auf diese Weise erfolgt eine effiziente Anpassung von Steuerungssignalen an sich verändernde
Systembedingungen. Durch Digitalisierung mittels der Datenerfassungseinheit 25 werden aus den Ausgangssignalen der Sensoren 3 digitale Messdaten gebildet und dem Mikroprozessor 26 bereitgestellt. Dabei erfolgt eine Abspeicherung der Messdaten über die vorgesehene Zeitspanne T hinweg. Mittels des Mikroprozessors 26 wird aus den Messdaten ein Belastungs-Zeit-Verlauf erstellt und ausgewertet. Dabei werden charakteristische Signalbereiche identifiziert und relevante Kenngrößen berechnet, beispielsweise Lastkollektive der Hebe- und Senkvorrichtung 22 und des Exzenterantriebs 14 oder Klassifizierungen des Schotterbetts 10. Zur etwaigen Anpassung von Steuerungsparametern werden die Kenngrößen an die Maschinensteuerung 32 übertragen. Auf diese Weise erfolgt zum Beispiel eine Anpassung der Stopfparameter an eine ermittelte Härte des Schotterbetts 10.
[33] Das entfernte Rechnersystem 28 ist vorteilhafterweise in einer Systemzentrale 33 angeordnet, um aktuell erfasste sowie historische Daten zu analysieren und daraus abgeleitete Wartungs- bzw. Inspektionsintervalle für das Stopfaggregat 2 vorzugeben. Als Kriterium dafür kann beispielsweise ein Abgleich eines gebildeten Lastkollektivs mit vorgegeben
Zeitfestigkeitsbereichen herangezogen werden.
[34] Beispielhafte Verläufe der Exzenterleistung Ph und der Eindringleistung Pe über eine zusammenhängende Arbeitszeitspanne T hinweg sind in Fig. 5 dargestellt. Dabei ist eine Ähnlichkeit zwischen beiden Verläufen erkennbar, weil sich die Beschaffenheit des Schotterbetts 10 auf beide Größen Ph, Pe auswirkt. Ein härteres Schotterbett 10 mit bereits fortgeschrittener Liegedauer erfordert sowohl eine höhere Exzenterleistung Ph als auch eine höher Eindringleistung Pe. Bei einer Neulage mit neuem Schotter sind die aufzubringenden Leistungen Ph, Pe hingegen niedriger.
[35] Um einem jeweiligen Bearbeitungsabschnitt eines Schotterbetts 10 eine vorgegeben Zustandsklasse (weich-Neulage, mittel, hart-alt) zuzuordnen, sind für zumindest eine der beiden Leistungsgrößen Ph, Pe entsprechende Wertebereiche vorgegeben. Durch einen Abgleich der ermittelten Leistungsverläufe mit diesen vorgegeben Wertebereichen erfolgt eine automatisierte Klassifizierung der bearbeiteten Schotterbettabschnitte.
[36] Vorteilhafterweise wird die ermittelte Zustandsklasse verknüpft mit einer Durchführungszeit und einem Durchführungsort in einer Ausgabeeinrichtung 29 (Computerbildschirm, Tablet etc.) angezeigt. Im einfachsten Fall geschieht dies in tabellarischer Form mit Datum, Baustellenbezeichnung, Zustandsklasse sowie mittlerer Exzenterleistung Ph und mittlerer Eindringleistung Pe.
[37] Eine Anzeige 34 mit hohem Informationsgehalt ist in Fig. 6 dargestellt. Dabei ist eine Baustelle 35 in einer elektronischen Landkarte 36 eingezeichnet, wobei einzelnen Baustellenabschnitten unterschiedlich gekennzeichnete Zustandsklassen zugeordnet sind. Basis dafür bildet eine vorgegebene Härteskala 37 für das Schotterbett 10. Zudem werden an markanten Stellen der Baustelle Datums- und Uhrzeitangaben 38 angezeigt.
description
Method and system for monitoring the loading of a tamping unit
Technical field [01] The invention relates to a method for monitoring the load of a
Stopfaggregates a track construction machine, wherein at least one sensor is arranged to detect a load on the Stopfaggregates. In addition, the invention relates to a system for carrying out the method.
PRIOR ART [02] EP 2 154 497 A2 discloses a device for bearing diagnosis on an eccentric shaft of a tamping unit by means of a vibration sensor. In this case, the vibration sensor is arranged on a housing of an eccentric drive. Only free oscillations of the eccentric drive in a phase during which the tamping unit is located outside of a ballast bed are detected. Based on changes in the data recorded at intervals, the state of wear of the bearing of the eccentric shaft is concluded.
Summary of the Invention [03] It is the object of the invention to provide an improvement over the prior art for a method and a system of the type mentioned in the introduction.
[04] According to the invention these objects are achieved by a method according to claim 1 and a system according to claim 12. Advantageous developments of the invention will become apparent from the dependent claims.
[05] In this case, measured data acquired by means of the sensor are stored over a period of time in an evaluation device, wherein at least one load-time profile for cyclic penetration processes of the tamping unit into a ballast bed is derived from the stored measurement data. External or internal forces acting on the tamping unit or tamping unit parts are taken into account in this way in the course of a load size. On the one hand, this leads to conclusions about the load situation of the tamping unit
Specify maintenance measures or maintenance intervals. On the other hand, evaluations of a ballast bed processed by means of the tamping aggregate are possible because it is possible to deduce from the progression of the detected load size to the forces acting on the tamping aggregate from the ballast bed.
In one embodiment of the invention it is provided that from the
Stress-time course a load collective is calculated. The load collective directly indicates the loads to which the tamping unit has been exposed for the recorded period of time. This results in a predictable service life of the tamping unit or tamping unit parts by comparison with time-stability specifications.
[07] For a current assessment of the stress situation by a
Operator, it is advantageous if by means of an output device from the load-time history derived load condition is displayed. In this way, it is possible to react directly to violations of predetermined load limits.
[08] In an advantageous method, one in a lifting and
Countersinking the tamping unit arranged hydraulic cylinder monitored, being detected as measurement data, a piston travel and hydraulic pressures acting in the hydraulic cylinder. Based on these measurement data, a calculation of a penetration force is carried out by means of the evaluation device for each penetration process. The corresponding load-time curve forms an evaluation basis for the stuffing aggregate load or the ballast bed condition.
[09] A further development of the method provides that a penetration energy introduced when the tamping unit enters the ballast bed is calculated. As a corresponding load-time curve, a course of the penetration energy over several stuffing cycles is mapped. In this case, an averaging can be useful to mitigate any anomalies that may occur during the measurement data acquisition. The penetration energy to be applied for penetration into a ballast bed is a meaningful evaluation parameter for the ballast bed condition.
[10] Furthermore, it is advantageous if a penetration force acting on the ballast bed during penetration of the tamping unit is calculated. From the course of the penetration over a continuous working period across conclusions about the nature of a processed track can be drawn. In addition, the penetration force to be applied is a meaningful evaluation parameter for the
Stopfaggregatbelastung.
In an alternative embodiment of the invention or as an extension of the aforementioned method, it is provided that an eccentric drive of the tamping unit is monitored by detecting a power of the eccentric drive over the working time span. With the course of the applied eccentric performance as load-time curve is drawn conclusions about the load situation of Stopfaggregats or the ballast bed condition.
[12] It is advantageous if, in the case of a hydraulic eccentric drive of the tamping unit, a pressure or a pressure difference and a flow rate are detected as measured data and if a hydraulic power of the eccentric drive is derived therefrom. Alternatively, the power of the eccentric drive may be derived from a measured torque and speed.
[13] The same applies to an expression with an electrical eccentric drive of the tamping unit. This is advantageously monitored by an applied voltage and a current are detected as measured data, from which an electric power of the eccentric drive is derived.
[14] For automated maintenance planning for the tamping unit, it is advantageous if, based on the load-time profile, a maintenance or inspection interval of the tamping unit is specified by means of a computer unit.
[15] In addition, it is advantageous for an automated evaluation of the ballast bed condition if, based on the load
Time course by means of a computer unit, a classification of the stuffed ballast bed is performed.
[16] In this case, an improvement of the method provides that the classification of the ballast bed associated with an execution time and / or a performance location is displayed in an output device. In this way, it becomes immediately apparent in which work sections which ballast bed properties were present.
[17] In the system according to the invention for carrying out one of the aforementioned methods, the tamping unit has at least one sensor for detecting a load, wherein the sensor is connected to the evaluation device and wherein the evaluation device is set up to determine the load-time profile from the stored measurement data , The evaluation device is located either on the tamping machine or in a remote system center. Depending on the measurement data via signal lines or via an internal vehicle bus system or a wireless communication device are transmitted to the evaluation.
In an advantageous embodiment of the system, the evaluation device comprises a data acquisition unit, a microprocessor and a communication means for transmitting data to remote computer systems or output devices. The Data Acquisition Unit (DAQ) digitizes analog sensor signals to determine the load-time history from the digitized measurement data by means of the microprocessor. In particular, characteristic signal ranges are identified by means of the microprocessor and relevant parameters are calculated.
[19] A further development of the system provides that a machine control is connected to drives or control components of the tamping unit and that the machine control is supplied with the measured data in order to adapt control data. Thus, an efficient control loop is realized to avoid overloading the tamping unit. It makes sense that the machine control is also connected to the evaluation device in order to predefine calculated parameters as control parameters for the machine control by means of the evaluation device. In this way, for example, be reacted automatically to a change in the ballast bed condition.
Brief Description of the Drawings [20] The invention will now be described by way of example with reference to the accompanying drawings. In a schematic representation:
Fig. 1 stuffing machine with Stopfaggregat
Fig. 2 Stopfaggregat
Fig. 3 waveforms during two stuffing cycles
Fig. 4 system structure
Fig. 5 performance curves over time
Fig. 6 display in an output device
DESCRIPTION OF EMBODIMENTS [21] The exemplary system comprises a tamping machine 1 with a tamping unit 2 on which a plurality of sensors 3 for detecting loads on the tamping unit 2 are arranged. Via signal lines 4, sensor signals are transmitted to an evaluation device 5. In the evaluation device 5, measurement data acquired by the sensors 3 are stored over a time period T and evaluated. The tamping machine 1 is movable on a track 6. The track 6 comprises a rail grid 9 formed from rails 7, sleepers 8 and rail fastenings, which is mounted on a ballast bed 10 (FIG. 1).
When Unterstopfen the track 6 of the rail grid 10 is brought by means of a lifting-straightening unit 11 in a desired position. To stabilize this position, stuffing tools 12 of the tamping unit 2 penetrate into the ballast bed 10 between the sleepers 8. The stuffing tools 12 are subjected to a vibratory movement 13. This vibratory movement 13 is produced by means of an eccentric drive 14. At this are auxiliary cylinders 15 are connected to provide the stuffing tools 12 in the lowered state, that is to move toward each other (Fig. 2). This order movement 16 remains superimposed on the vibration movement 13, wherein the vibration frequency during a penetration 17 (eg 45 Hz) is usually higher than during a Beistellvorgangs 18 (eg 35 Hz). In this way the penetration into the ballast is facilitated, because at an increased frequency the vibrated ballast resembles a flowing medium.
[23] The eccentric drive 14 is arranged on a tool carrier 19. On the tool carrier 19 also pivot arms 20 are mounted. These have the stuffing tools 12 at the lower ends. At upper ends, the pivot arms 20 are coupled via the side cylinders 15 with a driven by means of the eccentric 14 eccentric shaft. The tool carrier 19 is guided in an assembly frame 21 and vertically movable by means of a lifting and lowering device 22. In this case, the lifting and lowering device 22 comprises a hydraulic cylinder 23. The hydraulic cylinder 23 is supported against a machine frame 24 of the tamping machine 1 and causes in operation a lifting and lowering force Fz on the tool carrier 19. The applied by the hydraulic cylinder 23 during a Eindringvorgangs 17 lowering force Fz is a proportion of a penetration force Fe, which acts on the ballast bed 10.
[24] By measuring the hydraulic pressures acting in the hydraulic cylinder 23, the lowering force Fz can be easily determined. For detecting the penetration force Fe, the mass and the acceleration of the tool carrier 19 together with the parts arranged thereon are additionally taken into account. The acceleration can be calculated by two differentiation from a measured piston travel x of the hydraulic cylinder 23. In order to determine the penetration force Fe, only a pressure and displacement measurement on the hydraulic cylinder 23 is thus carried out with a known mass of the moving parts.
[25] By acquiring the measured data over a period of time T, the result is a progression of the penetration force Fe over time t. In this way you first get a simple load-time history. For further evaluations, in particular a plurality of stuffing cycles are monitored and in each case the highest penetration force is stored during the respective penetration process 17, so that the stress-time profile indicates the maximum penetration force over the time t, ie over a plurality of consecutive stuffing cycles. From the load-time curve or a load-time function, a load collective can be determined in a simple manner. This makes it immediately apparent which loads have occurred over the considered period of time T away.
[26] For the development of the load-time curve, the penetration energy Ee is calculated for each penetration 17; or (1) with (2) xo ... the beginning of a penetration route
Xi ... End of a penetration path to ... Start of an intrusion 17 ti ... End of an intrusion process 17
By monitoring a plurality of penetration processes 17 over the time span T, the course of the penetration energy Ee over time t is thus obtained. An averaging over several penetrations 17 thereby leads to a mitigation of possibly occurring anomalies in the measurement data acquisition.
[27] In a further consequence, it may be useful to determine the penetration rate Pe applied during the respective penetration processes:
(3)
From a course of penetrating power Pe over a continuous working time T, both conclusions can be drawn about the loading situation of the tamping unit 2 and about the nature of the ballast bed 10 worked during the working time period T. Again, averaging is useful.
[28] In the case of multiple clogging, several stuffing operations (subcycles) occur at one point of the track 6 in order to achieve a given degree of compaction of the ballast bed 10. In this case, several load-time courses are formed, namely according to the sequence of subcycles. In a double clogging, for example, the course of the penetration force
Fe, the penetration energy Ee or the penetration Pe for all first sub cycles and separately for all second sub cycles.
As eccentric 14 for vibration generation, for example, a hydraulic motor is provided. In this case, a pressure difference Δρ between entry and exit of the hydraulic oil and a flow rate Q of the hydraulic oil are measured in order to obtain a hydraulic power Ph des
Eccentric 14 to determine:
(4) The eccentric power Ph is averaged over the respective stuffing cycle. For a contiguous working time span T with numerous stuffing cycles, this results in the course of the eccentric power Ph over the time t as the vibration load time curve.
[30] The individual courses are shown in simplified form in FIG. The uppermost diagram shows a course of the penetration path x (penetration depth) over the time t. This corresponds to the detected piston travel x of the hydraulic cylinder 23. At the beginning of the penetration path xo, the tips of the stuffing tools 12 touch the surface of the ballast bed 10 and at the end of the penetration path xi the stuffing tools 12 have reached the intended maximum penetration depth. In the diagrams below, the curves of the flow rate Q, the pressure difference Δρ, the resulting camshaft output Ph and, at the very bottom, the curve of the penetration force Fe are shown with the same time axis.
[31] As shown in FIG. 4, the evaluation device 5 comprises a data acquisition unit 25, a microprocessor 26 and a communication means 27 (eg modem) for transmitting data to remote computer systems 28 and output devices 29. For buffering data, the microprocessor 26 is conveniently connected to a memory device 30. The remote computer system 28 also includes a database means 31 for storing historical data.
[32] A machine controller 32 is supplied with output signals from the sensors 3 to form a control circuit. In this way, an efficient adaptation of control signals to changing ones takes place
System conditions. By digitalization by means of the data acquisition unit 25, digital measurement data are formed from the output signals of the sensors 3 and provided to the microprocessor 26. In this case, a storage of the measured data takes place over the intended time period T. By means of the microprocessor 26, a load-time curve is created and evaluated from the measured data. In this case, characteristic signal ranges are identified and relevant parameters calculated, for example, load spectra of the lifting and lowering device 22 and the eccentric drive 14 or classifications of the ballast bed 10. For any adaptation of control parameters, the characteristics are transmitted to the machine control 32. In this way, for example, an adaptation of the stuffing parameters to a determined hardness of the ballast bed 10 takes place.
The remote computer system 28 is advantageously arranged in a system center 33 in order to analyze currently recorded and historical data and to specify maintenance or inspection intervals derived therefrom for the tamping unit 2. As a criterion, for example, an adjustment of a load collective formed with predetermined
Time Durability areas are used.
[34] Exemplary curves of the eccentric power Ph and the penetration Pe over a continuous working time T are shown in FIG. In this case, a similarity between the two courses is recognizable because the nature of the ballast bed 10 affects both quantities Ph, Pe. A harder ballast bed 10 with an already extended service life requires both a higher eccentric power Ph and a higher penetration power Pe. In a new situation with new gravel, however, the applied power Ph, Pe are lower.
[35] In order to assign a predetermined condition class (soft new position, medium, hard-old) to a respective processing section of a ballast bed 10, corresponding value ranges are specified for at least one of the two output quantities Ph, Pe. By an adjustment of the determined performance curves with these predetermined value ranges, an automated classification of the processed ballast bed sections takes place.
[36] Advantageously, the determined condition class associated with an execution time and a performance location is displayed in an output device 29 (computer screen, tablet, etc.). In the simplest case, this is done in tabular form with date, site designation, condition class and average eccentric power Ph and average penetration Pe.
[37] A high information content display 34 is shown in FIG. In this case, a construction site 35 is shown in an electronic map 36, wherein individual construction site sections are assigned differently marked state classes. The basis for this is formed by a predetermined hardness scale 37 for the ballast bed 10. In addition, date and time indications 38 are displayed at striking points on the construction site.
权利要求:
Claims (15)
[1]
claims
1. A method for monitoring the load of a tamping unit (2) of a track construction machine (1), wherein at least one sensor (3) for detecting a load of Stopfaggregates (2) is arranged, characterized in that by means of the sensor (3) detected measurement data over a period of time (T) are stored away in an evaluation device (5) and that from the stored measurement data at least one load-time curve for cyclic penetration processes (17) of the tamping unit (2) in a ballast bed (10) is derived.
[2]
2. The method according to claim 1, characterized in that from the load-time course, a load collective is calculated.
[3]
3. The method according to claim 1 or 2, characterized in that in a lifting and lowering device (22) of the Stopfaggregats (2) arranged hydraulic cylinder (23) is monitored and that as measured data a piston stroke (x) and in the hydraulic cylinder (23) acting hydraulic pressures are detected.
[4]
4. The method according to any one of claims 1 to 3, characterized in that a penetration of the tamping unit (2) into the ballast bed (10) introduced penetration energy (Ee) is calculated.
[5]
5. The method according to any one of claims 1 to 4, characterized in that a penetration of the tamping unit (2) into the ballast bed (10) acting penetration (PE) is calculated.
[6]
6. The method according to any one of claims 1 to 5, characterized in that an eccentric drive (14) of the Stopfaggregats (2) is monitored and that over the period (T) across a power of the eccentric drive (14) is detected.
[7]
7. The method according to claim 5, characterized in that a hydraulic eccentric drive (14) of the Stopfaggregats (2) is monitored and that as measured data, a pressure (Δρ) and a flow rate (Q) are detected and that from a hydraulic power (Ph) of the eccentric drive (14) is derived.
[8]
8. The method according to claim 5, characterized in that an electric eccentric drive (14) of the Stopfaggregats (2) is monitored and that a voltage and a current are detected as measured data and that therefrom an electric power of the eccentric drive (14) is derived.
[9]
9. The method according to any one of claims 1 to 8, characterized in that based on the load-time course by means of a computer unit (28) a maintenance or inspection interval for the tamping unit (2) is specified.
[10]
10. The method according to any one of claims 1 to 9, characterized in that based on the load-time course by means of a computer unit (28), a classification of the stuffed ballast bed (10) is performed.
[11]
11. The method according to claim 10, characterized in that in an output device (29) the classification of the ballast bed (10) associated with a performance time and / or a performance venue is displayed.
[12]
12. System for carrying out a method according to one of claims 1 to 11, wherein the tamping unit (2) has at least one sensor (3) for detecting a load, characterized in that the sensor (3) is connected to the evaluation device (5) and that the evaluation device (5) is set up to determine the load-time profile from the stored measurement data.
[13]
13. System according to claim 12, characterized in that the evaluation device (5) comprises a data acquisition unit (25), a microprocessor (26) and a communication means (27) for transmitting data to remote computer systems (28) and output devices (29) ,
[14]
14. System according to claim 12 or 13, characterized in that a machine control (32) with drives or control components of the Stopfaggregats (2) is connected and that the machine control (32), the measurement data are supplied to adjust control data.
[15]
15. System according to claim 14, characterized in that the machine control (32) with the evaluation device (5) is connected to specify by means of the evaluation device (5) calculated parameters as control parameters.
类似技术:
公开号 | 公开日 | 专利标题
EP3721013A1|2020-10-14|Method and system for monitoring the loading of a tamping unit
EP2770108B1|2021-05-05|Tamping unit for a rail tamping machine
DE102008019578B4|2010-11-11|Apparatus and method for detecting damage to a work machine
WO2017097390A1|2017-06-15|Tamping unit having an angle sensor for determining the tamping tool position
EP3631087B1|2021-07-21|Method and device for compressing a track ballast bed
DE4409818A1|1994-09-29|Determining the beam position in a rod pump from the motor output
EP3147406B1|2017-12-20|Measuring system and method for compression control and computer program with a program code for execution of the method
DE102010060843A1|2012-05-31|Method and device for measuring soil parameters by means of compaction machines
EP3176324B1|2018-09-26|Method for determining the compaction of a substrate
DE202008010351U1|2008-12-11|Device for bearing diagnosis on eccentric shafts of tamping machines by means of vibration sensors
AT521798B1|2021-04-15|Method and device for compacting a ballast bed
WO2019120829A1|2019-06-27|Method for operating a tamping assembly of a track construction machine, and tamping device for track bed compaction, and track construction machine
AT410923B|2003-08-25|METHOD AND DEVICE FOR DETECTING A DAMAGED ROLLING BEARING OF WHEELS OF A RAIL VEHICLE
DE102014013674B4|2017-01-12|Filling system for filling hollow bodies, method for operating a filling system and motor vehicle seat system
DE102010033344A1|2012-02-09|Method for monitoring drive components of a large hydraulic excavator
DE102017122089A1|2019-03-28|Monitoring arrangement and method for monitoring a machine
DE102014103688A1|2015-09-24|Device and method for error detection in machines
DE3908540C2|1993-10-21|Method for rock-dependent control of a part-cut drive-on machine
DE102018100911A1|2019-06-13|Method for the early detection of damage to a machine tool; Apparatus for carrying out the method; as well as machine tool
WO2019129448A1|2019-07-04|Method for operating a tamping assembly of a track construction machine, tamping device for compacting a track bed, and track construction machine
WO2008025304A1|2008-03-06|Monitoring method
DE202007018383U1|2008-05-29|Device for determining the degree of hardness of semi-solid materials
同族专利:
公开号 | 公开日
EA202000143A1|2020-10-13|
JP2021505795A|2021-02-18|
US20200370248A1|2020-11-26|
WO2019110239A1|2019-06-13|
CN111417756A|2020-07-14|
EP3721013A1|2020-10-14|
CA3079624A1|2019-06-13|
AT520698B1|2020-09-15|
引用文献:
公开号 | 申请日 | 公开日 | 申请人 | 专利标题
GB2451310A|2007-07-21|2009-01-28|Monition Ltd|Monitoring the maintenance condition of a tamping machine|
AT515801A4|2014-09-16|2015-12-15|System 7 Railsupport Gmbh|Method for compacting the ballast bed of a track|
WO2017097390A1|2015-12-10|2017-06-15|Plasser & Theurer Export Von Bahnbaumaschinen|Tamping unit having an angle sensor for determining the tamping tool position|
EP3239398A1|2016-04-29|2017-11-01|HP3 Real GmbH|Tamping unit for a rail tamping machine|WO2021197741A1|2020-04-01|2021-10-07|Plasser & Theurer Export Von Bahnbaumaschinen Gesellschaft M.B.H.|System for working on a track|AT319312B|1971-02-19|1974-12-10|Plasser Bahnbaumasch Franz|Device for controlling the lateral adjustment of tool assemblies of a track construction machine|
DE102006023646A1|2006-05-18|2007-11-22|Db Netz Ag|Diagnostic system for auxiliary vehicles, in particular track-laying machines|
AU2012398058A1|2012-12-27|2015-08-13|Acciona Infraestructuras, S.A.|Predictive method for analysing tampering equipment, and tampering equipment|
AT513973B1|2013-02-22|2014-09-15|System7 Railsupport Gmbh|Tamping unit for a tamping machine|
AT518195B1|2016-01-26|2017-11-15|Plasser & Theurer Export Von Bahnbaumaschinen Gmbh|Method for compacting the ballast bed of a track and tamping unit|
CN205557207U|2016-01-28|2016-09-07|中国铁建高新装备股份有限公司|Two two pillow tamping cars of marching type of resting head on main track tamping machine and being equipped with device|AT521798B1|2018-10-24|2021-04-15|Plasser & Theurer Export Von Bahnbaumaschinen Gmbh|Method and device for compacting a ballast bed|
RU2765725C1|2021-04-09|2022-02-02|Анатолий Николаевич Шилкин|Method for controlling the process of compaction of the ballast layer of the rail track|
法律状态:
优先权:
申请号 | 申请日 | 专利标题
ATA472/2017A|AT520698B1|2017-12-07|2017-12-07|Method and system for load monitoring of a tamping unit|ATA472/2017A| AT520698B1|2017-12-07|2017-12-07|Method and system for load monitoring of a tamping unit|
US16/768,133| US20200370248A1|2017-12-07|2018-11-09|Method and system for monitoring the loading of a tamping unit|
CN201880077758.1A| CN111417756A|2017-12-07|2018-11-09|Method and system for monitoring the load of a tamping unit|
CA3079624A| CA3079624A1|2017-12-07|2018-11-09|Method and system for monitoring the loading of a tamping unit|
EP18806991.8A| EP3721013A1|2017-12-07|2018-11-09|Method and system for monitoring the loading of a tamping unit|
JP2020531114A| JP2021505795A|2017-12-07|2018-11-09|Methods and systems for monitoring tamping unit load|
PCT/EP2018/080719| WO2019110239A1|2017-12-07|2018-11-09|Method and system for monitoring the loading of a tamping unit|
EA202000143A| EA202000143A1|2017-12-07|2018-11-09|METHOD AND SYSTEM FOR CONTROL OF LOAD ON SLEEVE TAPING UNIT|
[返回顶部]